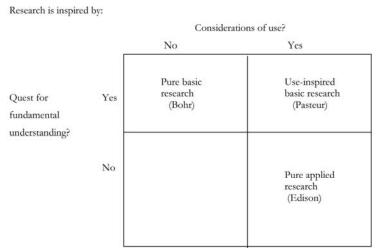
Fundamental Research in Engineering


Ed Lazowska University of Washington

Peter Lee Carnegie Mellon University

Version 6: December 12, 2008¹

There is an essential role for federal support of fundamental research in engineering fields, which falls under the purview of "science policy" rather than "technology policy" (the latter being concerned with issues such as broadband deployment and the R&D tax credit).

While there is a "development" component to engineering, there is a very substantial "fundamental research" component as well. This research tends to be "use-inspired" fundamental research – "Pasteur's quadrant," the upper right in Stokes's diagram²:

(adapted from Pasteur's Quadrant: Basic Science and Technological Innovation, Stokes 1997).

In 2003, the National Academy of Engineering developed a book and a companion website describing twenty "Greatest Engineering Achievements of the 20th Century" (see <u>http://www.greatachievements</u>):

¹ For the most current version of this essay, as well as related essays, visit <u>http://www.cra.org/ccc/initiatives</u>

² Stokes, Donald. Pasteur's Quadrant: Basic Science and Technological Innovation. Brookings Institution Press, 1997.

Electrification	Highways
Automobile	Spacecraft
Airplane	Internet
Water Supply and Distribution	Imaging
Electronics	Household Appliances
Radio and Television	Health Technologies
Agricultural Mechanization	Petroleum and Petrochemical
Computers	Technologies
Telephone	Laser and Fiber Optics
Air Conditioning and Refrigeration	Nuclear Technologies
	High-performance Materials

Greatest Engineering Achievements of the 20th Century

These achievements changed our lives. The fundamental research underlying most of them should be evident – research that led to the vacuum tube, the transistor, the integrated circuit, 60 years of progress in computer architecture, digital packet-switched communication, the TCP/IP network protocol suite, soft-tissue medical imaging, the laser, laser communication over fiber-optic cables, inertial guidance, mass production of penicillin, the gene sequencer, and so much more.

In 2008, NAE unveiled 14 "Grand Challenges for Engineering" for the 21st century (see <u>http://www.engineeringchallenges.org/</u>):

Make solar energy economical	Engineer better medicines
Provide energy from fusion	Reverse-engineer the brain
Develop carbon sequestration methods	Prevent nuclear terror
Manage the nitrogen cycle	Secure cyberspace
Provide access to clean water	Enhance virtual reality
Restore and improve urban infrastructure	Advance personalized learning
Advance health informatics	Engineer the tools of scientific discovery

Grand Challenges for Engineering for the 21st Century

Meeting these challenges would have game-changing impact. And, again, the necessary fundamental research underlying most of them should be evident. (It is worth noting that the innovation required for at least half of them has a substantial or even a predominant computer science component – a matter for a separate note.)

GRAND CHALLENGES FOR ENGINEERING

Provide energy from fusion

Develop carbon sequestration methods

Manage the nitrogen cycle

Provide access to clean water

Restore and improve urban infrastructure

Enhance virtual

Advance health informatics

terror

Reverse-engineer the brain

E

reality

Advance personalized learning

Prevent nuclear

Engineer the tools of scientific discovery

Greatest Engineering Achievements OF THE 20TH CENTURY

